Search results for "Total variation"
showing 10 items of 26 documents
Regular 1-harmonic flow
2017
We consider the 1-harmonic flow of maps from a bounded domain into a submanifold of a Euclidean space, i.e. the gradient flow of the total variation functional restricted to maps taking values in the manifold. We restrict ourselves to Lipschitz initial data. We prove uniqueness and, in the case of a convex domain, local existence of solutions to the flow equations. If the target manifold has non-positive sectional curvature or in the case that the datum is small, solutions are shown to exist globally and to become constant in finite time. We also consider the case where the domain is a compact Riemannian manifold without boundary, solving the homotopy problem for 1-harmonic maps under some …
Refitting Solutions Promoted by $$\ell _{12}$$ Sparse Analysis Regularizations with Block Penalties
2019
International audience; In inverse problems, the use of an l(12) analysis regularizer induces a bias in the estimated solution. We propose a general refitting framework for removing this artifact while keeping information of interest contained in the biased solution. This is done through the use of refitting block penalties that only act on the co-support of the estimation. Based on an analysis of related works in the literature, we propose a new penalty that is well suited for refitting purposes. We also present an efficient algorithmic method to obtain the refitted solution along with the original (biased) solution for any convex refitting block penalty. Experiments illustrate the good be…
Blind deconvolution using TV regularization and Bregman iteration
2005
In this paper we formulate a new time dependent model for blind deconvolution based on a constrained variational model that uses the sum of the total variation norms of the signal and the kernel as a regularizing functional. We incorporate mass conservation and the nonnegativity of the kernel and the signal as additional constraints. We apply the idea of Bregman iterative regularization, first used for image restoration by Osher and colleagues [S.J. Osher, M. Burger, D. Goldfarb, J.J. Xu, and W. Yin, An iterated regularization method for total variation based on image restoration, UCLA CAM Report, 04-13, (2004)]. to recover finer scales. We also present an analytical study of the model disc…
Total Variation Regularization in Digital Breast Tomosynthesis
2013
We developed an iterative algebraic algorithm for the reconstruction of 3D volumes from limited-angle breast projection images. Algebraic reconstruction is accelerated using the graphics processing unit. We varied a total variation (TV)-norm parameter in order to verify the influence of TV regularization on the representation of small structures in the reconstructions. The Barzilai-Borwein algorithm is used to solve the inverse reconstruction problem. The quality of our reconstructions was evaluated with the Quart Mam/Digi Phantom, which features so-called Landolt ring structures to verify perceptibility limits. The evaluation of the reconstructions was done with an automatic LR detection a…
Approximate Lax–Wendroff discontinuous Galerkin methods for hyperbolic conservation laws
2017
Abstract The Lax–Wendroff time discretization is an alternative method to the popular total variation diminishing Runge–Kutta time discretization of discontinuous Galerkin schemes for the numerical solution of hyperbolic conservation laws. The resulting fully discrete schemes are known as LWDG and RKDG methods, respectively. Although LWDG methods are in general more compact and efficient than RKDG methods of comparable order of accuracy, the formulation of LWDG methods involves the successive computation of exact flux derivatives. This procedure allows one to construct schemes of arbitrary formal order of accuracy in space and time. A new approximation procedure avoids the computation of ex…
Convergence for varying measures
2023
Some limit theorems of the type $\int_{\Omega}f_n dm_n -- --> \int_{\Omega}f dm$ are presented for scalar, (vector), (multi)-valued sequences of m_n-integrable functions f_n. The convergences obtained, in the vector and multivalued settings, are in the weak or in the strong sense.
MRI resolution enhancement using total variation regularization
2009
We propose a novel method for resolution enhancement for volumetric images based on a variational-based reconstruction approach. The reconstruction problem is posed using a deconvolution model that seeks to minimize the total variation norm of the image. Additionally, we propose a new edge-preserving operator that emphasizes and even enhances edges during the up-sampling and decimation of the image. The edge enhanced reconstruction is shown to yield significant improvement in resolution, especially preserving important edges containing anatomical information. This method is demonstrated as an enhancement tool for low-resolution, anisotropic, 3D brain MRI images, as well as a pre-processing …
Some qualitative properties for the total variation flow
2002
We prove the existence of a finite extinction time for the solutions of the Dirichlet problem for the total variation flow. For the Neumann problem, we prove that the solutions reach the average of its initial datum in finite time. The asymptotic profile of the solutions of the Dirichlet problem is also studied. It is shown that the profiles are nonzero solutions of an eigenvalue-type problem that seems to be unexplored in the previous literature. The propagation of the support is analyzed in the radial case showing a behaviour entirely different to the case of the problem associated with the p-Laplacian operator. Finally, the study of the radially symmetric case allows us to point out othe…
Nonlinear diffusion in transparent media: the resolvent equation
2017
Abstract We consider the partial differential equation u - f = div ( u m ∇ u | ∇ u | ) u-f=\operatornamewithlimits{div}\biggl{(}u^{m}\frac{\nabla u}{|\nabla u|}% \biggr{)} with f nonnegative and bounded and m ∈ ℝ {m\in\mathbb{R}} . We prove existence and uniqueness of solutions for both the Dirichlet problem (with bounded and nonnegative boundary datum) and the homogeneous Neumann problem. Solutions, which a priori belong to a space of truncated bounded variation functions, are shown to have zero jump part with respect to the ℋ N - 1 {{\mathcal{H}}^{N-1}} -Hausdorff measure. Results and proofs extend to more general nonlinearities.
Large solutions for nonlinear parabolic equations without absorption terms
2012
In this paper we give a suitable notion of entropy solution of parabolic $p-$laplacian type equations with $1\leq p<2$ which blows up at the boundary of the domain. We prove existence and uniqueness of this type of solutions when the initial data is locally integrable (for $1<p<2$) or integrable (for $p=1$; i.e the Total Variation Flow case).